

Calculation Policy

Status	Non-Statutory
Responsible Directors' Committee	Board of Directors
LGB Committee	Local Governing Body
Responsible Persons	Sarah Crampton in conjunction
	with members of Maths Network
Date Policy Agreed	Spring 22
Last Review Date	September 23
Next Review Date	September 25

Table of Contents

Introduction	3
Addition Year 1	5
Addition Year 2	7
Addition Year 3-6	13
Subtraction Year 1	17
Subtraction Year 2	20
Subtraction Year 3-6	22
Multiplication Year 1	25
Multiplication Year 2	27
Multiplication Year 3	30
Multiplication Year 4	31
Multiplication Year 5-6	33
Multiplication Year 6	36
Division Year 1	37
Division Year 2	39
Division Year 3	40
Division Year 4 - 6	43
Division Voca C	46

Version Control

Version	Revision Date	Revised by	Section Revised
V2	27.09.23	SC	None all up to date

Introduction

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. This is a product of collaboration between all Exceed Maths Leaders and supports, unifies enhances the approaches already in place.

The purpose of a shared approach is to support teacher understanding and pedagogy; ensure there is consistency to support moderation and year group networks and to support more collaborative training/coaching opportunities within Mathematics.

Documents to further support the Teaching and Learning of Maths created/distributed by colleagues within the Maths Network are:

- 1. Diagnostic Assessment Document
- 2. Mental Maths & Arithmetic Progression Document
- 3. Teacher Prompt Document
- 4. Sentence Stems
- 5. Knowledge Organisers

Manipulatives

Throughout the policy examples of concrete and pictorial examples are shared. These are not an exhaustive list. Through using the accompanying Teacher Prompt Document individual teachers will be able to consider precisely which manipulatives and models need to be used with each particular group of pupils. Manipulatives and pictorial models should be used in every year group for all abilities when introducing a new concept to ensure children can underpin their knowledge securely.

Everyday objects are also invaluable to support children's learning to keep interest and help them understand that Maths is everywhere for example:

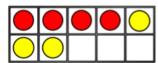
- 1. Pebbles
- 2. Marbles
- 3. Milk tops
- 4. Bun tins
- 5. Paper straws
- 6. Cotton Balls

- 7. Playdough
- 8. Lollipop Sticks
- 9. Dried Beans
- 10. Toy Cars
- 11. Fruit
- 12. Lego

Bar Modelling

The bar model is used to help children to 'see' mathematical structure. It is not a method for solving problems, but a way of revealing the mathematical structure within a problem and gaining insight and clarity to help solve it. It supports the transformation of real-life problems into a mathematical form and can bridge the gap between concrete mathematical experiences and abstract representations. It should be preceded by and used in conjunction with a variety of representations, both concrete and pictorial, all of which contribute to children's developing number sense. It can be used to represent problems involving the four operations, ratio and proportion. It is also useful for representing unknowns in a problem and as such can be a precursor to more symbolic algebra.

It is helpful to introduce children to the bar model as part of a sequence of learning so they can connect their understanding of the real world to this mathematical representation. Bar modelling should be used when introducing problem solving physical or abstract to pupils to see the Maths from Year 1 - Year 6. These can be introduced alongside practical resources and/or acting out the problem. The problem and use of bar models can then be built upon year on year and become more complex through to Year 6.



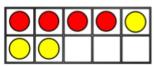
Addition Year 1

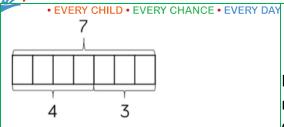
Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-part-whole model	Use part-part-whole model.	3 part whole 2 3 Balls 2 Balls	4 7 $4 + 3 = 7$ Four is a part, 3 is a part and the whole is seven.
	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	10 = 6 + 4 Use the part-part-whole diagram as shown above to move into the abstract.
	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.

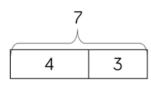
Regrouping to make 10.

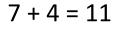
This is an essential skill for column addition later

$$6 + 5 = 11$$




Start with the bigger number and use the smaller number to make 10. Use ten frames.


Represent and use number bonds and related subtraction facts within 20.


2 more than 5.

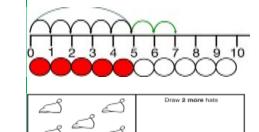
Use pictures of a number line. Regroup or partition the smaller number using the part-part-whole model to make 10.

If I am seven, how many more do I need to make 10. How many more do I add on now?

$$6 + \Box = 11$$

 $6 + 5 = 5 + \Box$

$$6 + 5 = \Box + 4$$


Children to develop an understanding of equality.

Emphasis should be on language.

"1 more than 5 is equal to 6."

"2 more than 5 is 7."

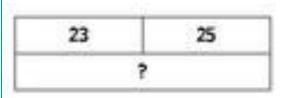
"8 is 3 more than 5."

5 + 2 =

Addition Year 2

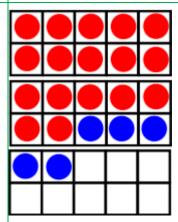
Objective & Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten.	50 = 30 + 20 Model using dienes and bead strings.	3 tens + 5 tens = tens 30 + 50 = Use representations for base ten.	20 + 30 = 50 70 = 50 + 20 40 + □ = 60
Use known number facts	Children explore ways of making numbers within 20.	20	+ 1 = 16
Using known facts		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 + 4 = 7 Leads to 30 + 40 = 70 Leads to 300 + 400 = 700

Bar model

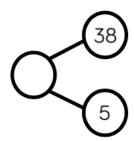


$$3 + 4 = 7$$

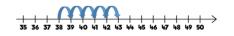
• EVERY CHILD • EVERY CHANCE • EVERY DAY •



$$7 + 3 = 10$$



$$23 + 25 = 48$$


Add a two digit number and one.

7 + 5 = 22Use ten frame to make "magic ten"

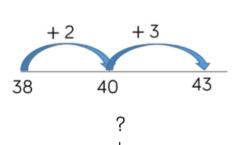
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
					-	-			

$$38 + 5 = 43$$

$$17 + 5 = 22$$

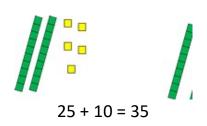
Explore related facts:

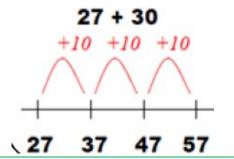
$$17 + 5 = 22$$


$$5 + 17 = 22$$

$$22 - 17 = 5$$

$$22 - 5 = 17$$



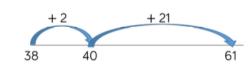


38			

Add a two digit number and tens

$$27 + 10 = 37$$

 $27 + 20 = 47$
 $27 + \Box = 57$


Add two twodigit numbers

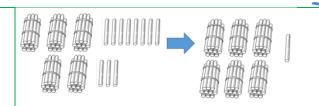
Explore that the ones digit does not change.

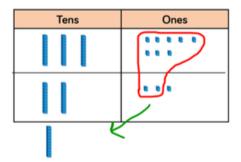
Model using dienes, place value counters and numicon.

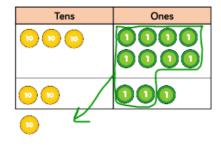
Use number line and bridge ten using part-part-whole if necessary

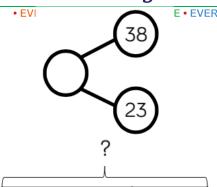
$$25 + 47$$

$$20 + 5 40 + 7$$

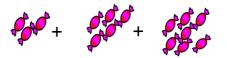

$$20 + 40 = 60$$


$$5 + 7 = 12$$


$$60 + 12 = 72$$



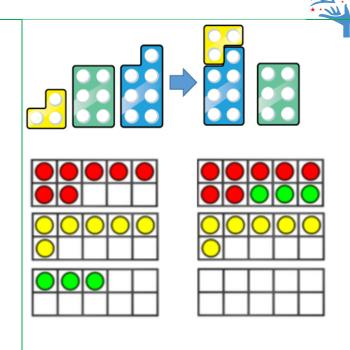
23

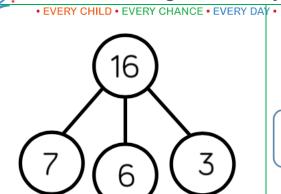

38

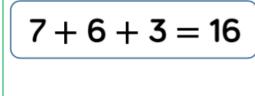
38 + 23 = 61

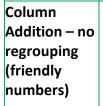
Add three one-digit numbers

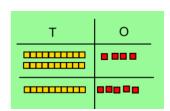
Combine to make 10 first if possible, or bridge 10 then add third digit.

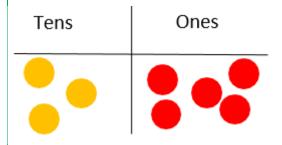

Regroup and draw representation

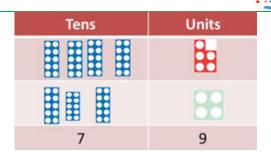



Combine the two number that make/bridge ten then add on the third.


$$7 + 6 + 3 = 16$$

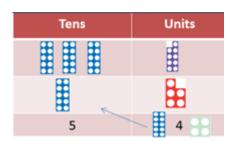


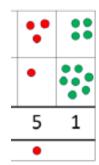



Model using dienes or Numicon.
Add together the ones first, then the tens.

16

Add the ones first, then the tens, then the hundreds.




• EVERY CHILD • EVERY CHANCE • EVERY DAY • Children move to drawing the counters using a tens and one frame.

Move to using place value counters.

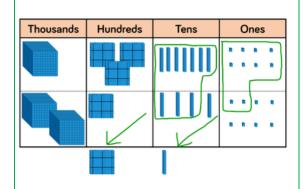
Column Addition – with regrouping

Exchange ten ones for a ten. Model using numicon and place value counters.

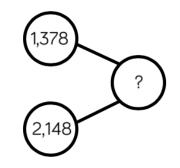
Children to draw a representation of the grid to further support their understanding, carrying the ten underneath the line.

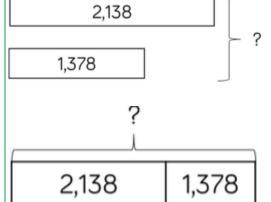
$$20 + 5$$
 36
 $40 + 8$ $+ 85$
 $60 + 13 = 73$ 121

Start by partitioning the numbers before formal column to show the exchanging.



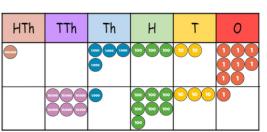
Addition Year 3-6


Objective & Strategy	Concrete	Pictorial	Abstract
Year 3 Add numbers with up to 3-digits	Hundreds Tens Ones	265	265 + 164 = 429
		? 164	265 + 164
	Hundreds Tens Ones	265	<u>429</u>
		?	
		265 164	

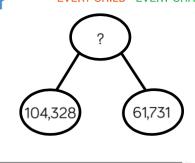


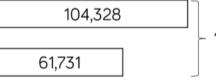
Year 4 Add numbers with up to four-digits

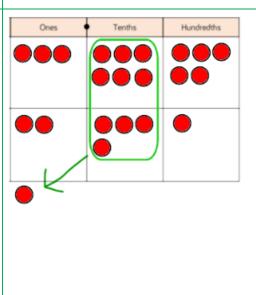
Thousands	Hundreds	Tens	Ones
<u></u>	80 80 80	0000	0000
_		000	0000
	100		0000
	100	<u>••</u>	

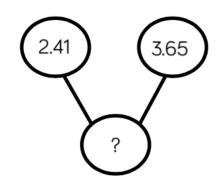


$$1,378 + 2,148 = 3,526$$


	1	3	7	8
+	2	1	4	8
	3	5	2	6
		1	1	

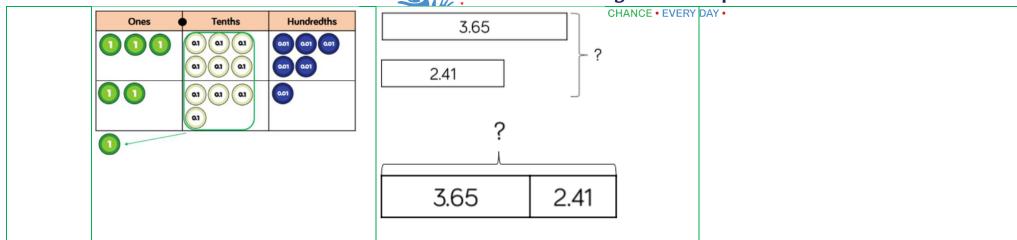

Exceed Learning Partnership • EVERY CHILD • EVERY CHANCE • EVERY DAY



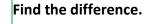

104,328	61,731

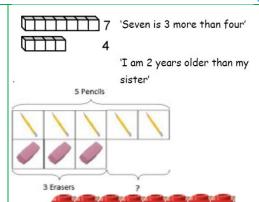
104,328 + 61,731 = 166,059

1	0	4	3	2	8
+	6	1	7	3	1
1	6	6	0	5	9
		1			

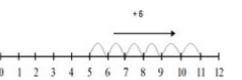

Year 5 and 6 Add with up to 3 decimal places

$$3.65 + 2.41 = 6.06$$


3.65 + 2.41 6.06

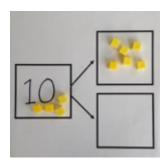


Subtraction Year 1

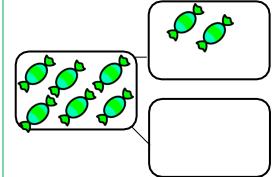

Objective & Strategy	Concrete	Pictorial	Abstract
Taking away ones.		* * * * * *	7 - 4 = 3
	6-4 = 2		16 – 9 = 7
	4-2=2		
	Use physical objects, counters, cubes etc	15 – 3 = 12	
	to show how objects can be taken away.	Cross out drawn objects to show what has	
		been taken away.	
Counting back.			Put 13 in your head, count back 4.
		5 - 3 = 2	What number are you at?
	Move objects away from the group,	0 1 2 3 4 5 6 7 8 9 10	
	counting backwards.	Count back in ones using a number line.	
	- 0000000000 0		
	Move the beads along the bead string as		
	you count backwards.		

Compare objects and amounts. Lay objects to represent bar model. 00000000

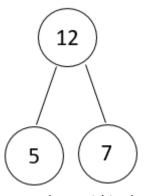
Children to draw the cubes/other concrete objects Children to explore why which they have used or use the bar model to illustrate what they need to calculate.


Count on using a number line to find the difference.

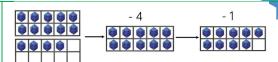
Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?

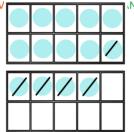

Find the difference between 8 and 5. 8-5, the difference is \Box

9 - 6 = 8 - 5 = 7 - 4 have the same difference.


Represent and use number bonds and related subtraction facts within 20. Part-part-whole model.

Link to addition. Use part-part-whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part?


Use pictorial representations to show the part.

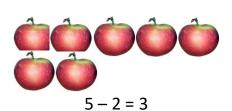

Move to using numbers within the partpart-whole model.

14 - 5

Make 14 of the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.

Children to present the ten frame pictorially and discuss what they did to make 10.

as the stopping point.

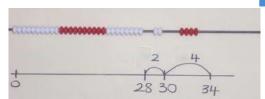

$$14 - 5 = 9$$
 $4 1$
 $14 - 4 = 10$
 $10 - 1 = 9$

Children to show how they can make 10 by partitioning the subtrahend.

$$16 - 8$$

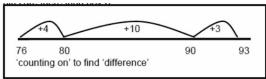
How many do we take off first to get Jump back 3 first, then another 4. Use ten to 10? How many left to take off?

Bar Model.


$$10 = 8 + 2$$
 $10 = 2 + 8$
 $10 - 2 = 8$
 $10 - 8 = 2$

Subtraction Year 2

Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ter ones	Use a place value chart to show how to change a ten into ten ones, use the term "take and make".	20 – 4 =	20 – 4 = 16
Partition to subtract without regrouping (friendly numbers).	34 – 13 = 21 Use dienes to show how to partition the number when subtracting without regrouping.	43-21=22 Children draw representations of dienes and cross off.	43 – 21 = 22

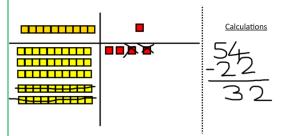

Make ten strategies.
Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.

Use a bead bar or bead strings to model counting to next ten and the rest.

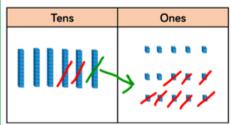
Exceed Learning Partnership

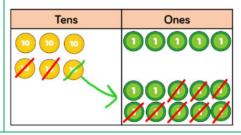
• EVERY CHILD • EVERY CHANCE • EVERY DAY

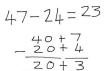
Use a number line to count on to next ten and then the rest.


93 - 76 = 17

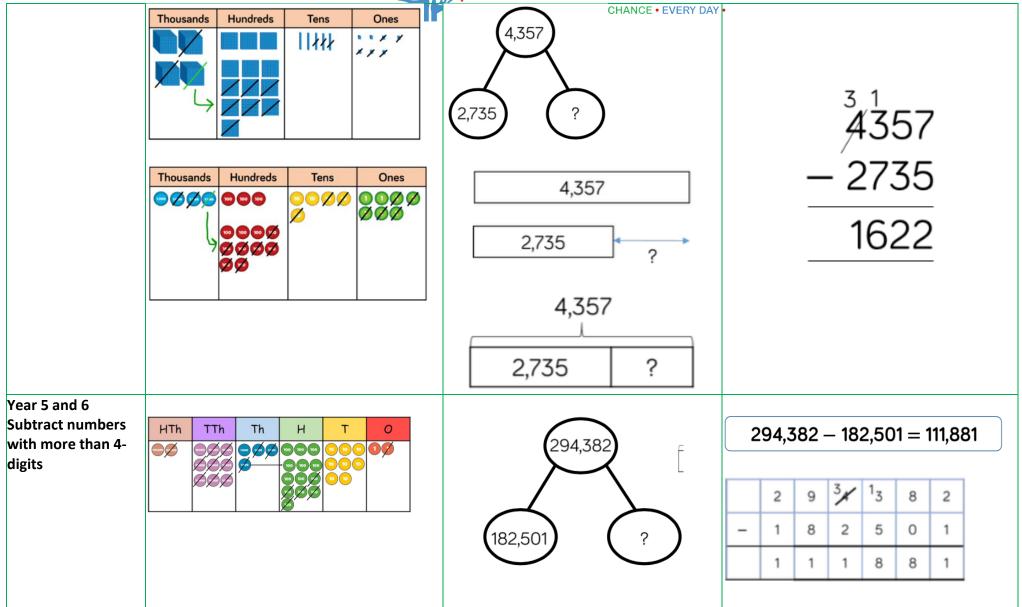
Column subtraction without regrouping (friendly numbers)

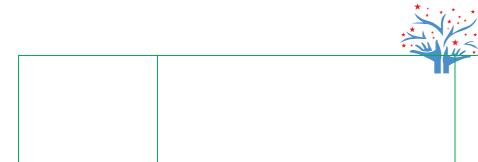


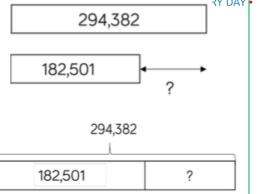



Use base 10 or numicon to model.

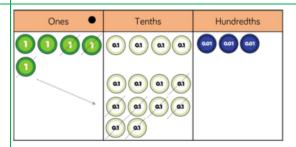
Draw representations to support understanding.

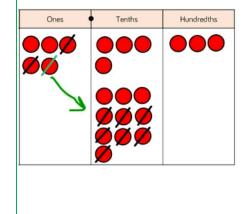


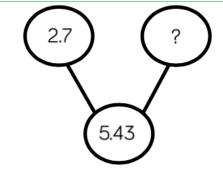

Intermediate step may be needed to lead to clear subtraction understanding.

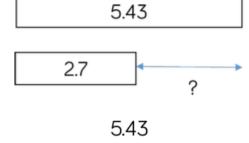


Subtraction Year 3-6


Objective & Strategy	Concrete	Pictorial	Abstract
Year 3 Subtract numbers with up to 3 digits	Hundreds Tens Ones Hundreds Tens Ones On	435 273 ? 435 273 ? 435 273 ?	$435 - 273 = 262$ $\begin{array}{r} {}^{3}4^{\frac{1}{3}}5 \\ - 273 \\ \hline 262 \end{array}$
Subtract numbers with up to 4 digits			4,357 - 2,735 = 1,622





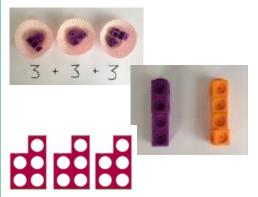


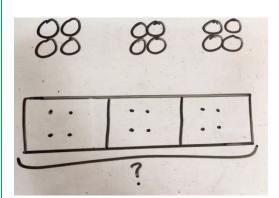
Year 5 and 6 Subtract with up to 3 decimal places

$$5.43 - 2.7 = 2.73$$

5.43 -2.7 2.73

Multiplication Year 1

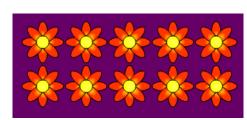

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling.	double 4 is 8 4 × 2 = 8 Use practical activities using manipulatives including cubes and numicon to demonstrate doubling.	Double 4 is 8 Draw pictures to show how to double numbers.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Counting in multiples.	Count the groups as children are skip counting, children may use fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of number. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30
Making equal groups and counting the total		Draw	2 x 4 = 8
		Draw and make representations.	


Use manipulatives to create equal groups.

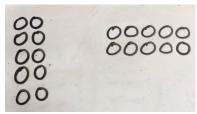
• EVERY CHILD • EVERY CHANCE • EVERY DAY •

Repeated addition

Use different objects to add equal group.



Children to represent the practical resources in a picture and use a bar model.



Write addition sentences to describe objects and pictures.

Understanding arrays

Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.

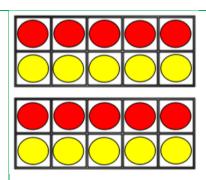
Draw representation of arrays to show understanding.

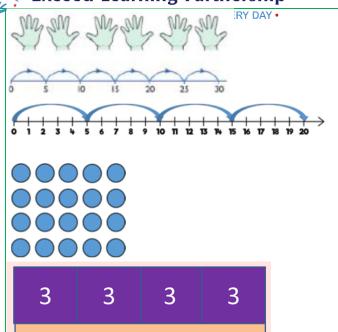
$$10 = 2 \times 5$$

$$5 \times 2 = 10$$

$$2 + 2 + 2 + 2 + 2 = 10$$

$$10 = 5 + 5$$


Children to be able to use an array to write a range of calculations.



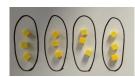
Multiplication Year 2

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	40 + 12 = 52 Model doubling using dienes and place value counters.		16 10 10 10 10 10 10 10 10 10 10 10 10 10
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	5+5+5+5+5+5+5+5=40 Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.		4 × 3 = Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30

Number lines, counting sticks and bar models should be used to show representation of counting

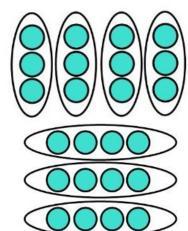
in multiples.

5+5+5+5=20 $4 \times 5 = 20$ $5 \times 4 = 20$


One bag holds 5 apples. How many apples do 4 bags hold?


Multiplication is commutative

Create arrays using counters and cubes and numicon.



Pupils should understand that an array can represent different equations and that as multiplication is commutative, the order of the multiplication does not affect the answer.

• EVERY CHILD • EVERY CHANCE • EVERY DAY •

Exceed Learning Partnership

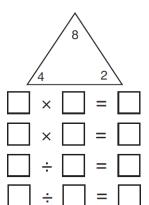
Use representative of arrays to show different calculations and explore commutativity.

 $12 = 3 \times 4$

$$12 = 4 \times 3$$

Use an array to write multiplication sentences and reinforce repeated addition.

$$5 + 5 + 5 = 15$$

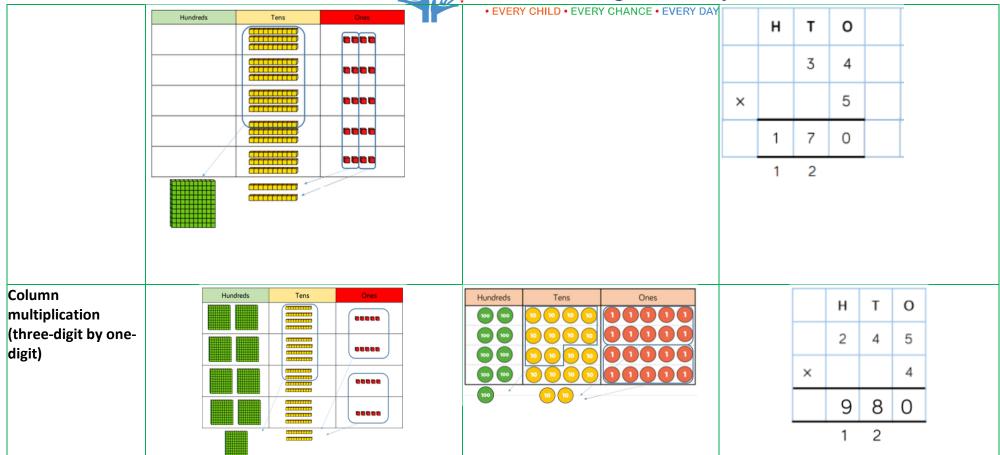

$$3 + 3 + 3 + 3 + 3 = 15$$

$$5 \times 3 = 15$$

$$3 \times 5 = 15$$

Using the Inverse
This should be
taught alongside
division, so pupils
learn how they
work alongside
each other.

$$2 \times 4 = 8$$
 $4 \times 2 = 8$
 $8 \div 2 = 4$
 $8 \div 4 = 2$
 $8 = 2 \times 4$
 $8 = 4 \times 2$
 $2 = 8 \div 4$
 $4 = 8 \div 2$
Show all 8 relevant fact family sentences.


Multiplication Year 3

Objective & Strategy	Concrete	Pictorial	Abstract
Grid method.	Show the links with arrays to first introduce the grid method. Move onto dienes to move towards a more compact method. Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below. 4 x = 20 Bar models are used to explore missing numbers.	x 30 5 7 210 35 210 + 35 = 245 Start with multiplying by one digit numbers and showing the clear addition alongside the grid. 10 8 10 80 30 24 100 80 30 + 4 214 1 Moving forward, multiply by a two-digit number showing the different rows within the grid method.

Multiplication Year 4

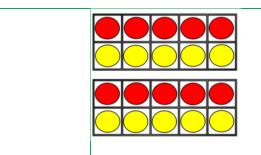
Objective & Strategy									bstract				
Grid method recap	Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows. Fill each row with 126. Add up each column, starting with the ones making any exchanges needed. Then you have your answer.	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start v	x 30 5 7 210 35 210 + 35 = 245 Start with multiplying by one-diginumbers and showing the clear aulongside the grid.					ditior				
Column nultiplication two-digit by one- digit)	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. 321 x 6 = 642 It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside.	Hundreds Tens Ones O	x +	H T 3	5 0		× 4)						

Multiplication Year 5-6

Objective & Strategy	Concrete	Pictorial	Abstract
Column multiplication for three and four-digits x one-digit		Thousands Hundreds Tens Coes 100 00 100 100 100 10 10 11 11 11 11 11	Th H T O 1 8 2 6 x 3 5 4 7 8 2 1
Column multiplication for two-digit x two-digit		100 100 10 10 10 10 1 1 1 1 1 1 1 1 1 1	x 20 2 30 600 60 1 20 2 600 60 20 + + 2 682

			* • E	VERY	CHILD • E	VERY	CHANCE •	EVERY DAY		×	H 6 6	T 2 3 2 6 8	O 2 1 2 0 2	
Multiply three- digit numbers by two-digit numbers	10 10	1000	1000	100	100 11		10 10 10 10 10 10 10 10 10 10 10 10 10 1		× 30 2	20 6,0 40	00	3	30 00 30	4 120 8
		100	100	10	100	10								6000 900 120 400 60 + 8 7488

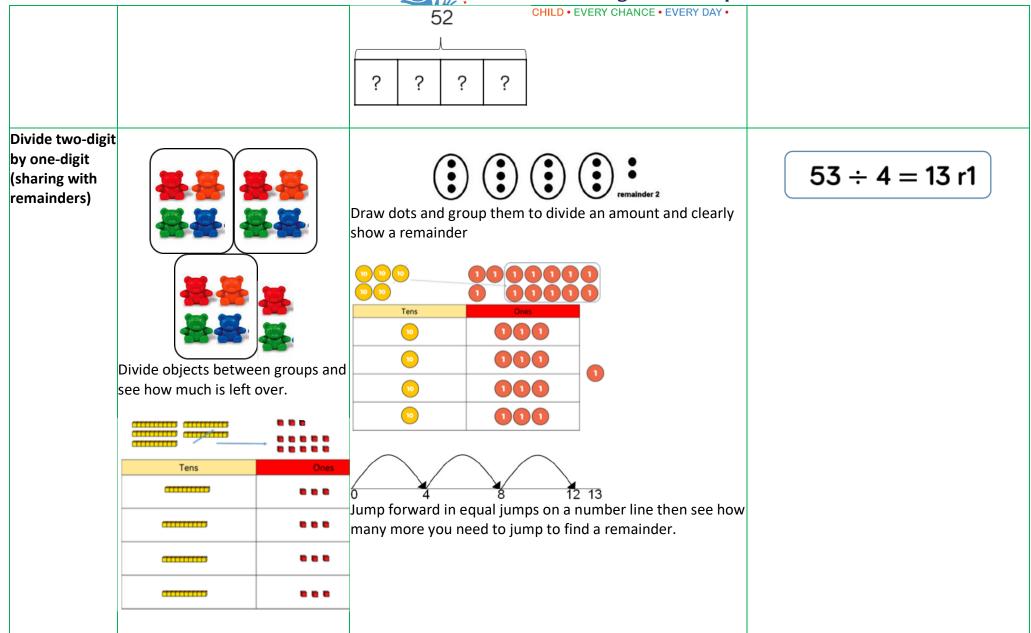
	• EVERY CHILD • EVERY CHANCE • EVERY DAY •			_		_			\neg
	• EVERY CHILD • EVERY CHANCE • EVERY DAY •	Th	н	Т	0				
			2	3	4				
		×		3	2				
			4	6	8				
		1 7	10	2	0				
		7	4	8	8				
Multiply four- digit numbers		TTh	Th	Н	ı	т	0		
by two-digit numbers			2	7		3	9		
numbers		×				2	8		
		2	1 5	3	7	1	2		
		5 1	4	7		8	0		
		7	6	6		9	2		
				1					


Multiplication Year 6

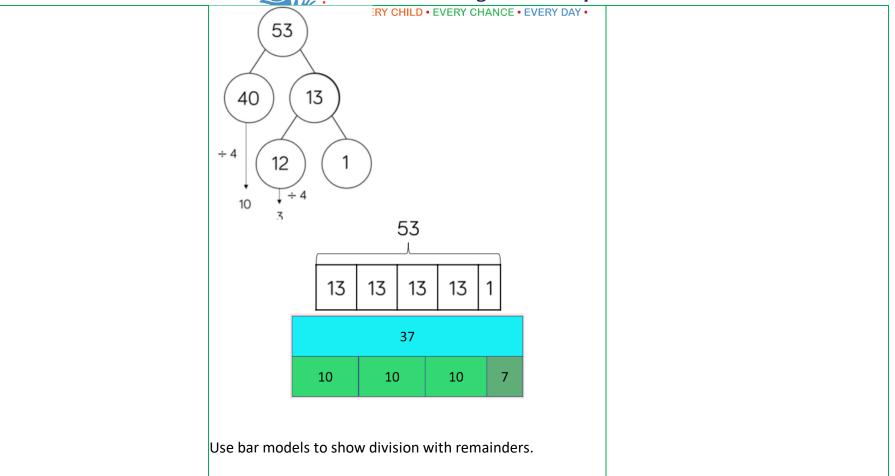

Objective & Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to two decimal places by a single digit.			3 · 1 9 × 8 2 5 · 5 2 Remind children that the single digit belongs to the ones column. Line up the decimal point in the question and the
			answer.

Objective & Strategy	Concrete	Pictorial	Abstract
Division as sharing	I have 10 cubes; can you share them equally in 2 groups?		$20 \div 5 = 4$ There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag?
Division as grouping			20 ÷ 5 = 4

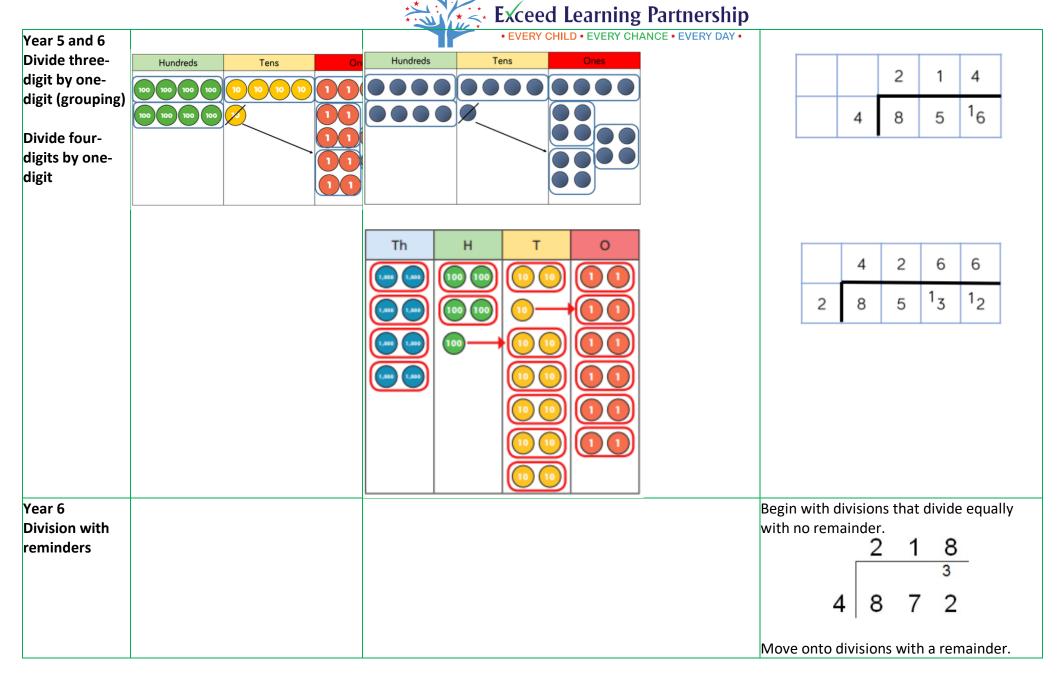
There are 20 apples altogether.
They are put in bags of 5.
How many bags are there?



Objective & Strategy	Concrete		Pictorial	Abstract	
Divide two-digit by one-digit (sharing with no exchange)		Tens 10 10 10 10	Ones 1 1 1 1 1	48 ÷ 2 = 24	
		40 8	÷ 2		



Objective & Strategy	Concre	te		Pictorial	Abstract
Divide two-digit by 1-digit (share with		- :::::	000	000000	52 ÷ 4 = 13
exchange)	Tens	Ones	Tens	Ones	
		•••	•	000	
		•••	100	000	
			10	000	
			÷ 4 ↓ 10 10 + 3	$ \begin{array}{c} 12 \\ \div 4 \\ 3 \\ = 13 \end{array} $	



Division Year 4 - 6

Objective & Strategy	Concrete	Pictorial	Abstract
Year 4 Divide two-digit by one-digit (grouping)	Tens Ones 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tens Ones	1 3 4 5 12
Year 4 and 5 Divide three- digits by one- digit (sharing)	Hundreds Tens 100 100 100 100 10 10 10 10 10 10 10 10	800 40 4 ÷ 4 † 4	844 ÷ 4 = 211
		? ? ?	

Exceed Learning Partnership
• EVERY CHILD • EVERY CHANCE • EVERY DAY • 8 6 r 2
3
5 4 3 2
Finally move into decimal places to divide the total accurately. 1 4 . 6
3 5 5 1 1 . 0
0 6 6 3 r 5 8) 5 3 50 9

Objective & Strategy	Concrete	Pictorial	Abstract					
Divide multi digits by 2- digits (short division)		7,335 \div 15 = 489 0 4 8 9 15 7 7 3 13 13 15 30 45 60 75 90 105 120 135 150	0 3 6					
Divide multi- digits by two- digits (long division)			12 × 1 = 12 12 × 2 = 24 12 × 3 = 36 12 × 4 = 48 12 × 5 = 60 12 × 6 = 72 12 × 7 = 84 12 × 7 = 108 12 × 7 = 108 12 × 10 = 120					

Exceed Learning Farmership								
• EVERY CHILD • EVERY CHANCE • EVERY DAY •		0	4	8	9			
	1	-	_	+	5			$1 \times 15 = 15$
			+	0	0	(×4	00	$2 \times 15 = 30$
		1	_	3	5			$3 \times 15 = 45$
	-		+	0	0	(×8	O)	$4 \times 15 = 60$
		+	1	3	5	(^0	O)	$5 \times 15 = 75$
		+	+ •	+		(0	,	$10 \times 15 = 150$
	-	_	1	3	5	(×9)	10 × 10 = 100
	L				0			
								hod to be used
								needing onal support/
	alte	rnat	ive s	strat	tegy	•		
				2	4	_	1	2 1 × 15 -
	-			2	4	r	-	- 1 1 10 -
	1	5	3	7	2			2 × 15 =
		_	3	0	0			3 × 15 =
				7	2			4 × 15 =
				-				5 × 15 =
		_		6	0			10 × 15
				1	2			

Signed CEO:

Signed Chair of Directors:

Policy to be reviewed: CXXXXXXXXXXXXXX