- EVERY CHILD • EVERY CHANCE • EVERY DAY•

Calculation Policy

Status	Non-Statutory
Responsible Directors' Committee	Board of Directors
LGB Committee	Local Governing Body
Responsible Persons	Sarah Crampton in conjunction with members of Maths Network
Date Policy Agreed	Spring 22
Last Review Date	September 23
Next Review Date	September 25

-EVERY CHILD•EVERY CHANCE•EVERY DAY•

Table of Contents

Introduction 3
Addition Year 1 5
Addition Year 2 7
Addition Year 3-6 13
Subtraction Year 1 17
Subtraction Year 2 20
Subtraction Year 3-6 22
Multiplication Year 1 25
Multiplication Year 2 27
Multiplication Year 3 30
Multiplication Year 4 31
Multiplication Year 5-6 33
Multiplication Year 6 36
Division Year 1 37
Division Year 2 39
Division Year 3 40
Division Year 4-6 43
Division Year 6 46

Version Control

Version	Revision Date	Revised by	Section Revised
V2	27.09 .23	SC	None all up to date

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. This is a product of collaboration between all Exceed Maths Leaders and supports, unifies enhances the approaches already in place.

The purpose of a shared approach is to support teacher understanding and pedagogy; ensure there is consistency to support moderation and year group networks and to support more collaborative training/coaching opportunities within Mathematics.

Documents to further support the Teaching and Learning of Maths created/distributed by colleagues within the Maths Network are:

1. Diagnostic Assessment Document
2. Mental Maths \& Arithmetic Progression Document
3. Teacher Prompt Document
4. Sentence Stems
5. Knowledge Organisers

Manipulatives

Throughout the policy examples of concrete and pictorial examples are shared. These are not an exhaustive list. Through using the accompanying Teacher Prompt Document individual teachers will be able to consider precisely which manipulatives and models need to be used with each particular group of pupils. Manipulatives and pictorial models should be used in every year group for all abilities when introducing a new concept to ensure children can underpin their knowledge securely.

Everyday objects are also invaluable to support children's learning to keep interest and help them understand that Maths is everywhere for example:

1. Pebbles
2. Marbles
3. Milk tops
4. Buntins
5. Paper straws
6. Cotton Balls
7. Playdough
8. Lollipop Sticks
9. Dried Beans
10. Toy Cars
11. Fruit
12. Lego

Bar Modelling

The bar model is used to help children to 'see' mathematical structure. It is not a method for solving problems, but a way of revealing the mathematical structure within a problem and gaining insight and clarity to help solve it. It supports the transformation of real-life problems into a mathematical form and can bridge the gap between concrete mathematical experiences and abstract representations. It should be preceded by and used in conjunction with a variety of representations, both concrete and pictorial, all of which contribute to children's developing number sense. It can be used to represent problems involving the four operations, ratio and proportion. It is also useful for representing unknowns in a problem and as such can be a precursor to more symbolic algebra.

It is helpful to introduce children to the bar model as part of a sequence of learning so they can connect their understanding of the real world to this mathematical representation. Bar modelling should be used when introducing problem solving physical or abstract to pupils to see the Maths from Year 1 Year 6. These can be introduced alongside practical resources and/or acting out the problem. The problem and use of bar models can then be built upon year on year and become more complex through to Year 6.

Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part-part-whole model	Use part-part-whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ Four is a part, 3 is a part and the whole is seven. $10=6+4$ Use the part-part-whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

$\begin{aligned} & \hline \text { Objective \& } \\ & \text { Strategy } \end{aligned}$	Concrete	Pictorial	Abstract									
Adding multiples of ten.	$50=30+20$ Model using dienes and bead strings.	Use representations for base ten.	$\begin{gathered} 20+30=50 \\ 70=50+20 \\ 40+\square=60 \end{gathered}$									
Use known number facts	Children explore ways of making numbers within 20.	$\begin{gathered} 20=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	$\square+1=16$ $16-1=\square$ $1+\square=16$ $16-\square=1$									
Using known facts		$\begin{aligned} & \because+\therefore=\therefore \\ &\\|+\\|\\|\\| \\ &\\|+\\|\\|\\| \\ & \square=\\| \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ Leads to $30+40=70$ Leads to $300+400=700$									

Exceed Learning Partnership

Exceed Learning Partnership

Add a two digit number and tens	$25+10=35$ Explore that the ones digit does not change.		$\begin{gathered} 27+10=37 \\ 27+20=47 \\ 27+\square=57 \end{gathered}$
Add two twodigit numbers	Model using dienes, place value counters and numicon.	Use number line and bridge ten using part-part-whole if necessary	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Exceed Learning Partnership

Exceed Learning Partnership

Exceed Learning Partnership

	 Move to using place value counters.	Children move to drawing the counters using a tens and one frame.	
	Exchange ten ones for a ten. Model using numicon and place value counters.	Children to draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	$\begin{aligned} & 20+5 \\ & 40+8 \end{aligned} \begin{array}{r} 36 \\ +85 \\ \hline 60+13=73 \end{array}$ Start by partitioning the numbers before formal column to show the exchanging.

Objective \& Strategy
Year 3
Add numbers with up to 3-digits

Pictorial

Abstract
$265+164=429$
265
$+164$
429
1

Exceed Learning Partnership

EXCeed Learning Partnership

等
Exceed Learning Partnership

- EVERY CHILD • EVERY CHANCE • EVERY DAY•

Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$\begin{gathered} 7-4=3 \\ 16-9=7 \end{gathered}$
Counting back.	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?

Find the difference.	Compare objects and amounts. Lay objects to represent bar model.	- EVERY CHILD • EVERY CHANCE • EVERY D Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate. Count on using a number line to find the difference.	Hännah has 12 sweets and her sister has 5. How many more does Hannah have than her sister? Find the difference between 8 and 5 . $8-5$, the difference is Children to explore why $9-6=8-5=7-4$ have the same difference.
Represent and use number bonds and related subtraction facts within 20. Part-part-whole model.	Link to addition. Use part-part-whole model to model the inverse. If 10 is the whole and 6 is one of the parts, what is the other part?	Use pictorial representations to show the part.	Move to using numbers within the part-part-whole model.
Make 10.	14-5		

Exceed Learning Partnership

	Make 14 of the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	-EV $\square \square\|\square\| \square$ NCE•EVERY Children to present the ten frame pictorially and discuss what they did to make 10. Jump back 3 first, then another 4 . Use ten as the stopping point.	$\begin{gathered} 14-5=9 \\ 4 \\ 14-4=10 \\ 10-1=9 \end{gathered}$ Children to show how they can make 10 by partitioning the subtrahend. $16-8$ How many do we take off first to get to 10? How many left to take off?
Bar Model.	$5-2=3$		8 2 $\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Exceed Learning Partnership

- EVERY CHILD • EVERY CHANCE • EVERY DAY•

Subtraction Year 2

Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a place value chart to show how to change a ten into ten ones, use the term "take and make".	$20-4=$	$20-4=16$
Partition to subtract without regrouping (friendly numbers).	$34-13=21$ Use dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of dienes and cross off.	$43-21=22$

Exceed Learning Partnership

Exceed Learning Partnership

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling.	Use practical activities using manipulatives including cubes and numicon to demonstrate doubling.	Double 4 is 8 \square \square \square \square \square \square \square Draw pictures to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples.		(10010 010010010 0l0 010 0100lool Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of number. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$
Making equal groups and counting the total		Draw to show $2 \times 3=6$ Draw and make representations.	$2 \times 4=8$

Exceed Learning Partnership

Repeated addition

- EVERY CHILD • EVERY CHANCE • EVERY DAY •

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and place value counters.	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	$5+5+5+5+5+5+5+5=40$ Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.		$4 \times 3=$ \square Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$

Exceed Learning Partnership

$\sin _{5}$	$\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$
	One bag holds 5 apples. How many apples do 4 bags hold?
$\bigcirc \bigcirc \bigcirc$	
$1 \bigcirc \bigcirc \bigcirc$	
$\bigcirc \bigcirc \bigcirc$	
$\begin{array}{lll}3 & 3 & 3\end{array}$	
$?$	
Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	

Exceed Learning Partnership

Multiplication is commutative	Create arrays using counters and cubes and numicon. Pupils should understand that an array can represent different equations and that as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representative of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 relevant fact family sentences.

- EVERY CHILD • EVERY CHANCE • EVERY DAY •

-EVERY CHILD • EVERY CHANCE • EVERY DAY•

Exceed Learning Partnership

Exceed Learning Partnership

-EVERY CHILD • EVERY CHANCE • EVERY DAY •

Exceed Learning Partnership

- EVERY CHILD • EVERY CHANCE • EVERY DAY •

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplying decimals up to two decimal places by a single digit.			Remind children that the single digit belongs to the ones column. Line up the decimal point in the question and the answer.

-EVERY CHILD • EVERY CHANCE • EVERY DAY •

- EVERY CHILD • EVERY CHANCE • EVERY DAY•

- EVERY CHILD • EVERY CHANCE • EVERY DAY•

Exceed Learning Partnership

Divide two-digit
by one-digit
sharing with
remainders)

Exceed Learning Partnership

- EVERY CHILD • EVERY CHANCE • EVERY DAY•

Strategy
Year 4
Divide two-digit
by one-digit
(grouping)

Year 4 and 5
Divide three-
digits by one-
digit (sharing)

Exceed Learning Partnership

Year 5 and 6 Divide three- digit by one- digit (grouping)
Divide four- digits by one- digit

Finally move into decimal places to divide the total accurately.

				4	6
				6	21
3	5	5		1	0

$\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}$
-EVERY CHILD • EVERY CHANCE • EVERY DAY•

-EVERY CHILD • EVERY CHANCE • EVERY DAY•

Signed Chair of Directors:
Policy to be reviewed: CXXXXXXXXXXXXXX

